Convergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems

نویسندگان

  • Vaithilingam Jeyakumar
  • Jean B. Lasserre
  • Guoyin Li
  • T. S. Pham
چکیده

In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper and the lower level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a convex lower-level problem involves solving a transformed equivalent single-level problem by a sequence of SDP relaxations; whereas our approach for general problems involving a non-convex polynomial lower-level problem solves a sequence of approximation problems via another sequence of SDP relaxations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables

We consider optimization problems with polynomial inequality constraints in non-commuting variables. These non-commuting variables are viewed as bounded operators on a Hilbert space whose dimension is not fixed and the associated polynomial inequalities as semidefinite positivity constraints. Such problems arise naturally in quantum theory and quantum information science. To solve them, we intr...

متن کامل

Solving polynomial least squares problems via semidefinite programming relaxations

A polynomial optimization problem whose objective function is represented as a sum of positive and even powers of polynomials, called a polynomial least squares problem, is considered. Methods to transform a polynomial least squares problem to polynomial semidefinite programs to reduce degrees of the polynomials are discussed. Computational efficiency of solving the original polynomial least sq...

متن کامل

Minimizing Polynomial Functions

We compare algorithms for global optimization of polynomial functions in many variables. It is demonstrated that existing algebraic methods (Gröbner bases, resultants, homotopy methods) are dramatically outperformed by a relaxation technique, due to N.Z. Shor and the first author, which involves sums of squares and semidefinite programming. This opens up the possibility of using semidefinite pr...

متن کامل

Second-Order Cone Relaxations for Binary Quadratic Polynomial Programs

Several types of relaxations for binary quadratic polynomial programs can be obtained using linear, secondorder cone, or semidefinite techniques. In this paper, we propose a general framework to construct conic relaxations for binary quadratic polynomial programs based on polynomial programming. Using our framework, we re-derive previous relaxation schemes and provide new ones. In particular, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016